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2 · Carsten Moenning et al.

1. INTRODUCTION

Mesh subdivision has developed into a powerful and widely-used tool for the free-
form design, editing and representation of smooth surfaces. Subdivision schemes
recursively apply a local subdivision operator to a coarse base mesh thereby produc-
ing a sequence of refined meshes which quickly converges to a smooth limit surface.
The advantages of mesh subdivision include guaranteed global surface smoothness
whilst supporting local feature control, the ability to handle surfaces of arbitrary
topology and being efficiently and simple to apply once a base mesh is available
[Dyn and Levin 2002; Zorin and Schröder 2000].

Unfortunately, when dealing with point-sampled geometry, mesh subdivision re-
quires frequently costly and generally non-geometric surface reconstruction, see,
e.g., [Amenta et al. 1998; Amenta et al. 2001; Bernadini et al. 1999; Boissonnat
and Cazals 2000; Curless and Levoy 1996; Edelsbrunner and Mücke 1994], often
followed by mesh simplification ([Gotsman et al. 2002] and references therein),
parameterisation [Floater and Hormann 2004] and remeshing ([Alliez et al. 2003]
and references therein), all pre-processing steps to obtain a base mesh. During
the reconstruction step, any measurement noise, misalignment of scans, etc. may
translate into topological artifacts in the form of erroneous connectivity and genus
[Wood et al. 2004]. This hinders subsequent mesh simplification and remeshing and
thus mesh subdivision processing. Also, in the case of extremely high-dimensional
manifolds by samples [Tenenbaum et al. 2000], mesh pre-processing breaks down
at the surface reconstruction step and it needs to be worked directly with the point
cloud.

This paper advocates the use of meshless, or point cloud, geometric subdivision.
We propose to avoid the consideration of mesh connectivity graphs and the asso-
ciated pre-processing steps and instead to work with the point-sampled geometry
directly using intrinsic subdivision rules. In this paper, we show the conceptual via-
bility of this notion of meshless geometric subdivision by introducing a first intrinsic
meshless subdivision scheme using geodesic centroids of intrinsic point neighbour-
hoods. We put forward a new method for the computation of these geodesic means,
which by itself is of interest in other areas such as intrinsic statistical shape analysis
[Fletcher et al. 2003] and variational theory [Jost 1994; Kendall 1990].

Some of the related geometric operations may be approximated in an Euclidean
context when working with large sampling densities, regular meshes and very local
subdivision rules. Working with the point-sampled geometry directly and intrinsi-
cally, however, avoids the need for non-geometric pre-processing steps and special
rules dealing with irregular mesh connectivity. Unlike the non-geometric nature of
Euclidean-based (pre-)processing, meshless intrinsic subdivision inherently captures
the non-linear intrinsic structure of the object geometry and the principle applies
equally well to three and higher-dimensional surfaces. Although it is possible to
obtain a geodesic mesh representation of a point-sampled surface [Peyré and Cohen
2003; Sifri et al. 2003], to continue performing subdivision truly intrinsically, this
mesh would have to be modified repeatedly during each iteration to re-enforce its
intrinsic nature and more than one mesh would be required to be able to compute
correct geodesic distances.

Our algorithm operates intrinsically throughout without the need for prior surface
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Meshless Geometric Subdivision · 3

reconstruction with the help of the geodesic distance mapping algorithm for point
clouds presented in Mémoli and Sapiro [2003]. Following an overview of related
work in Section 2 and some mathematical preliminaries in Section 3, we therefore
summarise the main aspects of this technique in Section 4. Section 5 presents our
intrinsic meshless subdivision algorithm. Section 6 gives experimental results and
comments on implementational aspects. In the concluding Section 7, we briefly
remark on our ideas and some preliminary results for the theoretical analysis of
intrinsic meshless subdivision schemes.

2. RELATED WORK

We start with a summary of the ideas underpinning mesh-based subdivision of
surfaces in R3. The overview is motivational in nature, for a thorough formal
treatment of mesh subdivision, see Dyn and Levin [2002]. The section is concluded
with remarks on recent progress in meshless, point-based surface processing related
to our work.

Following the notation of Dyn and Levin [2002], surface subdivision schemes con-
sist of a subdivision operator S recursively applied to control nets Nl = N(V l, El, F l)
of arbitrary topology, with l ∈ Z0 denoting the subdivision level, V representing
a set of control vertices in R3 and E and F describing the topological relations in
the form of edges and faces respectively. The iterative application of this scheme
generates a sequence Nl+1 = SNl. More specifically, starting with a coarse base net
N0, at each iteration, new control vertices are inserted and connected according to
the scheme’s refinement rule and re-positioned following the operator’s geometric
averaging rule. Both the refinement and the geometric averaging rule give the po-
sition of control vertices in Nl+1 in the form of weighted averages of topologically
neighbouring vertices in Nl. The careful choice of these rules in relation to the con-
trol vertex valency, i.e. the number of edges emanating from the vertex, guarantees
the convergence of the scheme, in each component and in the uniform norm, to a
limit surface of provable continuity.

Not every existing mesh subdivision operator allows for this simple distinction
between a topological refinement and a geometric averaging rule. However, those
that do allow for this kind of distinction, include the most widely-used schemes.
For example, the Loop [1987] subdivision scheme for triangular control nets may
be cast in this form. In the case of this scheme, the refinement rule adds points
related to each edge in the triangulation using face splitting. The averaging rule of
points, which depends on the vertices and edges of the non-refined triangulation,
then yields the final positions of the vertices in the refined triangulation.

Point-based surface processing advocates the use of points as editing and display
primitive thereby avoiding the need for a mesh connectivity graph and the manifold
reconstruction step. Recent progress in this field has been sufficiently substantial
to realise powerful point-based editing, free-form and multiresolution modelling
[Alexa et al. 2003; Linsen 2001; Pauly et al. 2002; Pauly et al. 2003; Zwicker
et al. 2002] and visualisation [Grossman and Dally 1998; Kalaiah and Varshney
2001; Levoy and Whitted 1985; Pfister et al. 2000; Rusinkiewicz and Levoy 2000;
Zwicker et al. 2001; 2002] alternatives to mesh-based processing methods. With
numerous applications in medical imaging, reverse engineering, cultural heritage
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4 · Carsten Moenning et al.

preservation, natural science experimentation, geoscience, numerical simulations,
etc. acquiring point sets of significant density from three or higher-dimensional
manifold surfaces, it is particularly attractive to avoid the generally costly, error-
prone and non-geometric mesh-related pre-processing steps and to work with point-
sampled geometry directly.

In this paper, we propose to replace the role of mesh connectivity in subdivision
with intrinsic point neighbourhood information and formulate a set of meshless
refinement and geometric averaging rules in the form of weighted geodesic centroids
of these local neighbourhoods.

To the best of our knowledge, only Fleishman et al. [2003] and Guennebaud et al.
[2004] touch upon the notion of point cloud subdivision. In Fleishman et al. [2003],
the authors generate progressive levels-of-detail of point clouds by transferring the
mesh-based idea of subdivision displacement maps to the point cloud case. They
devise a point cloud simplification method for the generation of a base point set and
present both a projection and a local, uniform upsampling operator with the help
of local surface reconstruction using Moving Least Squares [Alexa et al. 2003]. The
authors successfully mimic the principle of mesh-based subdivision displacement
mapping for surfaces in point cloud form but do not consider the idea of meshless
subdivision.

Similarly, Guennebaud et al. [2004]1 are concerned with the upsampling of “surfel
sets”, i.e. input points equipped with normal, local sampling density (surfel radius)
and texture information, for magnified point rendering by splatting. Their inter-
polatory method requires that the underlying point cloud is regularly uniformly
distributed and noise-free and that features such as crease lines have been detected
and adequately sampled in a pre-processing step. Their technique is restricted in
applicability to surfaces in R3 and intended for the operation on top of a splat-
ting algorithm such as [Zwicker et al. 2001; 2002] providing the surfel information.
As is typically the case for independently determined neighbourhoods such as the
authors’ polygonal fan neighbourhoods, their (extrinsic) proximity and refinement
operators are affected by overlapping neighbour relations and the need for refine-
ment rules varying with the number of neighbours of the point under consideration.
This interpolatory mesh subdivision-inspired method is used for the locally smooth
upsampling of surfel sets as part of a dynamic splatting algorithm, the more general
notion of meshless subdivision is not considered.

This paper is concerned with the notion of meshless surface subdivision and
makes no assumptions on the availability of normal or local density information or
the regularity of the input point cloud. An intrinsic neighbourhood concept is used
which is based on a partitioning of the surface and avoids the shortcomings of point
neighbourhoods determined independently from each other. The approach is not
restricted to surfaces in R3 but extends to higher dimensions. Inspired by recent
work on geodesic curve subdivision [Wallner and Dyn 2003; 2004; 2005], it offers a
theoretical basis for global convergence and smoothness analysis.

In the following, we present our intrinsic framework for meshless subdivision.
We start with notation and the definition of some key notions used throughout the

1This work was produced at about the same time as ours, see [Moenning et al. 2004] for an
abbreviated publication of the ideas we now put forward in detail.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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paper. This is followed by the discussion of the intrinsic distance mapping algorithm
of Mémoli and Sapiro [2003] and the presentation of the framework itself.

3. PRELIMINARIES

Let M represent a differentiable (smooth), compact and connected Riemannian
submanifold in Rm, m ≥ 3. By intrinsic processing, we mean processing directly
on this submanifold rather than in its embedding space. M is represented by a
finite point set, or (unstructured) point cloud, P = {p1, p2, . . . , pn} ⊂ M . The
Riemannian metric on M at point x ∈ M is a smoothly varying inner product 〈., .〉
on the tangent space TxM . The norm of a vector v in TxM is given by ‖v‖ = 〈v, v〉 1

2 .
We endow M with the metric inherited from Rm, hence 〈v, w〉 will coincide with
the usual inner product for vectors v and w in Rm. Consider a (sectionally) smooth
curve γ : [a, b] ∈ R → M parameterised by t. The length of γ(t) follows from
integrating the norm of its tangent vectors, γ̇(t), along the curve, i.e.

L(γ) =
∫ b

a

‖γ̇(t)‖dt

The curve γ is called the (minimising) geodesic from a point x to a point y in M , if
it represents the minimum length-curve among all the curves on M joining x and
y. Since we are assuming M to be compact, it is geodesically complete and there
exists at least one such curve on M . This curve may not be unique. The length
of the geodesic between x and y gives the intrinsic, or geodesic, distance, dM (x, y),
between the points, i.e.

dM (x, y) = inf
γ
{L(γ)},

with γ(a) = x and γ(b) = y. The function giving the intrinsic distance from a
point x ∈ M to every point in M , dM (x, .), is called the intrinsic distance function,
or intrinsic distance map, of x. Unique geodesics between two points x and y on
M may thus be computed from dM (x, ·) by backtracking from y towards x in the
direction of the (negative) gradient of dM (x, ·).

The extrinsic distance between points x and y on M , d(x, y), is computed in the
metric of the embedding space. Since we are concerned with manifold surfaces in
Rm, the extrinsic distance is Euclidean and given by the length of the Euclidean
line segment between x and y in the ambient space. Apart from its end points,
this line segment generally does not lie on the manifold. More detail on the above
notions may be found in, for example, Chavel [1997].

By intrinisic, or geodesic, centroid, we understand the mean of a local neighbour-
hood of points on M computed in terms of intrinsic distances between the points.
This is to be distinguished from the extrinsic centroid of the subset, computed us-
ing Euclidean distances in the ambient space and subsequently projected onto the
manifold surface.

Our meshless subdivision scheme makes extensive use of the geodesic Voronoi
diagram concept: Define the bisector BS (pi, pj) of pi, pj ∈ P , pi 6= pj , as geodesi-
cally equidistantial loci with respect to pi, pj , i.e. BS (pi, pj) = {q ∈ M |dM (pi, q) =
dM (pj , q)}. Let the dominance region of pi, D(pi, pj), denote the region of M con-
taining pi bounded by BS (pi, pj). The Voronoi region of pi with respect to point

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



6 · Carsten Moenning et al.

set P is given by R(pi, P ) =
⋂

pj∈P,pj 6=pi
D(pi, pj) and consists of all points for

which the geodesic distance to pi is smaller than the geodesic distance to any other
pj ∈ P . The boundary shared by a pair of Voronoi regions is called a Voronoi
edge. Voronoi edges meet at Voronoi vertices. The geodesic Voronoi diagram of P
is defined as

VD(P) =
⋃

pi∈P

∂R(pi, P ),

where ∂R(pi, P ) denotes the boundary of R(pi, P ). Kunze et al. [1997] and Leibon
and Letscher [2000] give further details on the notion of geodesic Voronoi diagrams.

4. INTRINSIC DISTANCE MAPPING ACROSS POINT CLOUDS

To compute intrinsic distance maps, and from them (minimal) geodesics, across
point clouds, we use the extension of the original Fast Marching method [Helmsen
et al. 1996; Sethian 1996; Tsitsiklis 1995] to surfaces in point cloud form introduced
by Mémoli and Sapiro [2003]. In the following, we summarise the main aspects of
this technique. For full details, see Mémoli and Sapiro [2001; 2003].

Fast Marching generally represents a very efficient technique for the solution of
front propagation problems which can be formulated as boundary value partial
differential equations. Take the simple case of a front propagating across a 3D Eu-
clidean domain with speed, or weight, function F (v) away from a source (boundary)
u, with u and v representing 3-tuples in R3. We are interested here in the arrival
time, or offset distance, d(u, v), of the front at grid point v. The relationship be-
tween the magnitude of the distance map’s gradient, ∇d(u, v), and the given weight
F (v) at v can be expressed as the following boundary value formulation

|∇d(u, v)| = F (v),

with boundary condition d(u, u) = 0. The problem of determining a Euclidean
weighted distance map has therefore been transformed into the problem of solv-
ing a particular type of static Hamilton-Jacobi partial differential equation, the
nonlinear Eikonal equation. For F (v) > 0, this type of equation can be solved ef-
ficiently, in computationally optimal time, using conventional Cartesian numerics,
see, [Helmsen et al. 1996; Sethian 1996; Tsitsiklis 1995].

Mémoli and Sapiro [2003] extend the applicability of this Fast Marching idea to
the case of general co-dimension submanifolds in point cloud form in three or higher
dimensions. For simplicity, consider the constant radius r-offset Ωr

P , i.e. the union
of Euclidean balls with radius r centred at points pi ∈ P (Figure 1)

Ωr
P :=

n⋃

i=1

B(pi, r) = {x ∈ Rm : d(pi, x) ≤ r}

To approximate the weighted intrinsic distance map, dM (q, ·), originating from
a source point q ∈ M on M , Mémoli and Sapiro [2003] suggest computing the
Euclidean distance map in Ωr

P , denoted dΩr
P
. That is

|∇MdM (p, ·)| = F (p), (1)
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 1. Intrinsic distance mapping using Fast Marching for point clouds operates in an (not
necessarily constant radius) offset band consisting of the union of balls B(pi, r) centred at (black)
points pi of the surface M (left). Only those (blue) grid points falling inside the offset band
are considered during processing. A cross-sectional view of a constant radius offset band for the
Michelangelo Youthful data set is shown on the right.

for p ∈ M and with boundary condition dM (q, q) = 0 is approximated by

|∇dΩr
P
(p, ·)| = F̃ (p), (2)

for p ∈ Ωr
P and boundary condition dΩr

P
(q, q) = 0. F̃ represents the (smooth)

extension of the propagation speed F on M into Ωr
P ; ∇M denotes the intrinsic

gradient operator. The problem of computing an intrinsic weighted distance map
is therefore transformed into the problem of computing an Euclidean, or extrinsic,
weighted distance map in the offset band Ωr

P around the surface, i.e. in an Euclidean
manifold with boundary.

Mémoli and Sapiro [2003] prove uniform (probabilistic) convergence between
these two distance maps, and geodesics computed from them, for both noise-free
and noisy (provided noise is bounded from above by r), randomly-sampled point
clouds and thus show that the approximation error between the intrinsic and ex-
trinsic distance maps is of the same theoretical order as that of the conventional
Fast Marching algorithm. Fast Marching can therefore be used to approximate the
solution to (2) in a computationally optimal manner and without the need for any
prior surface reconstruction by only slightly modifying the conventional Cartesian
Fast Marching technique to deal with bounded spaces. This is achieved by simply
restricting the grid points visited by the conventional Fast Marching algorithm to
those located in Ωr

P . By performing the computations within this offset band, this
method is relatively robust in the presence of noisy point samples, especially when
compared to graph-based distance mapping algorithms such as [Giesen and Wagner
2003; Tenenbaum et al. 2000] in which case the geodesics pass through the noisy
samples rather than an union of Euclidean balls centred at the input points.

The complexity of this algorithm is O(N log N), where N represents the number
of grid points located in the (narrow) offset band Ωr

P . Memory efficiency is achieved
by storing these grid points only. Note in this context that subject to the bounds
given in Mémoli and Sapiro [2003], r will generally be small and does not have to be

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



8 · Carsten Moenning et al.

constant but may vary with each pi. Implementational details are given in Section
6.2.

This Fast Marching technique underpins our geodesic computation algorithm
presented as part of our intrinsic meshless subdivision framework in the following
section.

5. INTRINSIC MESHLESS SUBDIVISION

Subdivision schemes incorporate refinement and geometric averaging rules in the
form of weighted averages of local neighbourhoods. Mesh-based subdivision schemes
are derived in a parametric setting ignoring the geometric embedding of the points
in space. As a result, they are formulated in terms of local mesh connectivity rather
than object geometry. We determine local neighbourhood relations from intrinsic
point proximity information instead.

We start this section with the discussion of a suitable intrinsic neghbourhood
concept. This is followed by the presentation of our meshless subdivision scheme
and a new method for the computation of geodesic centroids, which is at the heart
of this scheme.

5.1 Intrinsic point proximity information

Depending on the acquisition technique used, point-sampled geometry may feature
(locally) non-uniform point distributions. In this setting, naive neighbourhood
concepts such as simple ball or k nearest neighbourhoods tend to be skewed, i.e.
the neighbours qj ∈ Pl are frequently no longer distributed spherically, i.e. all
around, the point p ∈ Pl under consideration [Floater and Reimers 2001; Linsen
2001].

To allow for local sampling non-uniformities, Linsen’s [2001] enhanced k nearest
neighbourhood, which enforces a maximum angle between successive neighbours
around p, or Floater and Reimer’s [2001] local Delaunay neighbourhood may be
used. Their algorithm projects a local ball neighbourhood of p and p itself into
their least squares plane and computes the planar Delaunay triangulation of the
projected points. The points’ neighbour relations in this triangulation are then
taken as the neighbour relations of p on the manifold. We suggest to collect local
proximity information by considering the set of (Voronoi) neighbours, Np, of p in
the geodesic Voronoi diagram of Pl, VD(Pl), instead, i.e. an intrinsic “natural
neighbourhood” [Sibson 1980],

Np = {q : p and q are neighbours in VD(Pl)},
for p, q ∈ Pl, p 6= q (Figure 2). Due to its intrinsic nature and unlike (Euclidean)
ball neighbourhoods, points from disjoint parts of a surface are prevented from be-
ing assigned to the same natural neighbourhood. The need for determining local
ball radii and the problem of locally ill-defined least squares fits in the case of k
nearest neighbourhoods do not arise. Since intrinsic natural neighbourhoods are
derived from a partitioning of the surface, the problem of overlapping neighbour
relations is avoided as well. This problem is typically encountered when using
point neighbourhoods computed independently from each other such as k nearest
neighbours and its variations [Guennebaud et al. 2004; Linsen 2001] and occurs
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Meshless Geometric Subdivision · 9

Fig. 2. As illustrated here for the planar case, the intrinsic Voronoi diagrams (solid lines) of
various moderately irregularly distributed point sets provide point proximity relations in the form
of intrinsic natural neighbourhoods (blue points) spherically distributed around the (red) point
under consideration.

irrespective of the regularity of the point set distribution. Intrinsic natural neigh-
bourhoods are, however, less straightforward to compute. We discuss our approach
in detail in Section 6.

We use intrinsic natural neighbourhood information for the computation of local
geodesic centroids as part of our meshless subdivision scheme presented next.

5.2 An intrinsic meshless subdivision scheme

Within our meshless geometric subdivision framework, geodesic centroids of the
intrinsic neighbourhoods discussed in the previous section are used to define mesh-
less subdivision rules. More specifically, we propose the following set of rules to be
applied at each iteration:

Refinement rule: For each neighbour qj ∈ Np, consider the union of intrinsic
neighbours of p, qj ∈ Pl, Npqj . Upsample Pl by inserting the weighted geodesic
centroid, c(Npqj ) ∈ Pl+1, of Npqj .

Geometric averaging rule: Replace p ∈ Pl by the weighted geodesic centroid,
c(Np) ∈ Pl+1, of its intrinsic Voronoi neighbourhood Np.

This use of weighted centroids in the refinement and geometric averaging rules is
reminiscent of both classical subdivision schemes [Zorin and Schröder 2000] (Section
2) and the “repeated averaging” approach towards the generation of subdivision
surfaces ([Lane and Riesenfeld 1980; Oswald and Schröder 2003] and references
therein). These subdivision rules are incorporated into our meshless subdivision
algorithm as summarised in Algorithm 1.

In its initialisation phase, the algorithm buckets the input point set Pl in a Carte-
sian grid, subsequently used to support weighted distance mapping and geodesic
centroid computation. Initialisation is completed with the computation of the (dis-
crete) geodesic Voronoi diagram of Pl, VD(Pl). Main processing loops over all
points in Pl and proceeds with the upsampling of Pl to Pl+1 using joint neighbour-
hood information readily available from VD(Pl) and our refinement rule. Following
this refinement step, VD(Pl+1) is computed. Meshless subdivision is concluded with
the application of our geometric averaging rule to each point in the refined point

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Input: Point cloud Pl ∈ Rm.
Output: Subdivided point cloud Pl+1.

0 *** INITIALISATION ***
1 Bucket the base point cloud Pl in a m-dimensional Cartesian grid;
2 Compute the discrete geodesic Voronoi diagram, VD(Pl), of Pl.
3
4 *** MAIN PROCESSING ***
5 FOR each point pi ∈ Pl;
6 Determine the Voronoi neighbourhood Npi from VD(Pl);
7 FOR each neighbour qj ∈ Npi ;
8 Determine the joint Voronoi neighbourhood Npiqj from VD(Pl);
9 Compute the weighted geodesic centroid c(Npiqj );
10 (Refinement rule) Upsample Pl to Pl+1 by inserting c(Npiqj );
11 ENDFOR
12 ENDFOR
13 Compute VD(Pl+1);
14 FOR each point pi ∈ Pl+1;
15 Determine the Voronoi neighbourhood Npi from VD(Pl+1);
16 Compute the weighted geodesic centroid c(Npi);
17 (Geometric averaging rule) Replace pi in Pl+1 with c(Npi);
18 ENDFOR

Alg. 1: One iteration of meshless subdivision in pseudocode.

set Pl+1 yielding the final, subdivided point set.
The applicability of this subdivision algorithm does not depend on a preceding

simplification step. Potential algorithm applications, however, include the case
in which it may be desirable to simplify an excessively dense point cloud P to a
suitable base point set P0 in the expectation that recursive subdivision of P0 results
in a smoother, more regular and more compact approximation of the underlying
surface than given by P . Since our subdivision algorithm requires the computation
of geodesic centroids across the base point set P0, for these centroids to be well-
defined, any simplification of P needs to be performed subject to a minimum point
density in P0. Due to the method’s simple control of a guaranteed point density,
its purely intrinsic operation, its close relationship with the natural neighbourhood
concept of Section 5.1 and its efficient implementability using the geodesic distance
mapping method of Mémoli and Sapiro [2003] (Section 4), we use the algorithm of
Moenning and Dodgson [2004] for the simplification of an input point cloud P to
a base point set P0 still sufficiently dense to support the computation of geodesic
centroids. As another result of this pre-processing step, the (discrete) geodesic
Voronoi diagram of P0 becomes available [Moenning and Dodgson 2004] so that it
does not need to be computed in our subdivision algorithm’s initialisation phase
and the natural neighbours of a point pi ∈ P0 are readily known.

By performing the averaging intrinsically, our meshless subdivision rules raise the
questions of how to compute geodesic centroids on manifolds and how to determine
a suitable neighbour weighting scheme. In this paper, we guide the choice of weights
by experimental results (Section 6) rather than theoretical evidence for the scheme’s
convergence towards a smooth limit surface. Future work will consider formal proofs
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 3. The unweighted centroid of a (blue) subset of this set of points is expected to be located
on or near the underlying surface. Due to the use of intrinsic distances, this is the case when
computing the geodesic centroid (red). By contrast, in the case of the Euclidean averaging of
the (blue) points, the resulting centroid (grey) is located away from the underlying surface. This
effect gets more pronounced when increasing the size of the subset (from left to right). Note that
for geodesically close neighbourhoods and those kinds of neighbourhoods only, the orthogonally
projected (ΠM : Ωr

M → M) Euclidean average, i.e. the extrinsic mean, generally provides a good
(first) estimate of the geodesic centroid (leftmost).

of the scheme’s convergence to a limit surface and, consequently, any light such
proofs may throw on the optimal choice of weights.

As regards the computation of geodesic centroids, Buss and Fillmore [2001]
present an algorithm for the computation of geodesic averages on spheres. We
generalise the underlying, earlier idea ([Karcher 1977] and references therein) of
minimising a least squares expression in geodesic distances in the following section.

5.3 Geodesic centroid computation

The benefit of performing the averaging intrinsically is that it ensures that sub-
division generates smoother, denser representations which remain geometrically
close to the surface. This is not guaranteed to be the case when considering Eu-
clidean instead of geodesic centroids. For the simple example illustrated in Figure
3, Euclidean averaging ignores the non-linear, intrinsic geometry of the object and
moves the centroid away from the surface. By contrast, since the computation of
the geodesic centroid is based on intrinsic rather than Euclidean distances, it is
inherently geometry-sensitive and falls onto the surface in each case.

The weighted geodesic centroid of a set of n points is defined as the point g ∈ M
which minimises the weighted sum of squared intrinsic distances to each point

J(g) :=
1
2

n∑

k=1

wkd2
M (g, pk),

where w1, . . . , wn represent the point weights, with 0 ≤ wi ≤ 1,
∑n

i=1 wi = 1.
In general, argmingJ(·) may not exist or may not be a single point. However, if
p1, . . . , pn are all contained in a sufficiently small open geodesic ball BM on M ,
a unique solution, gBM

of J(·), which happens to lie in BM [Karcher 1977], is
guaranteed. The property we are alluding to here is (geodesic) convexity, i.e. for
any pi, pj ∈ BM , the minimal geodesic from pi to pj is unique in M and contained
in BM .

In the Euclidean case, direct differentiation of J(·) yields the minimiser g =
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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∑n
k=1 wkpk. This simple result does not extend to the general case considered here

but we can prove that any minimiser must satisfy:

V (g) :=
n∑

k=1

wk∇M
1
2
d2

M (g, pk) = 0.

Then, starting from a good initial guess g0, we can track the minimiser g using back
propagation with velocity field V (·). This is due to the fact that if g0 ∈ BM and
BM as above, then −V (x) points towards gBM

, for x ∈ BM [Karcher 1977].
In practise, we set g0 = ΠM (

∑n
k=1 wkpk), where ΠM : Ωr

M → M is the orthog-
onal projection operator2. We now show that in the light of the considerations
presented above, this extrinsic mean represents either a reasonable initial condition
for the back propagation or a first approximation to the intrinsic centroid. By a
simple application of Lemma 17 of [Wallner and Dyn 2003], we have that

∥∥∥∥∥
n∑

k=1

wkpk −ΠM

(
n∑

k=1

wkpk

)∥∥∥∥∥ ≤ C(diam(B))2,

where C is a global constant which depends on the curvatures of M . Then, let
B = BM (x, ε), for some x ∈ M and ε > 0. Since ‖pi − x‖ ≤ dM (pi, x) ≤ ε, we
also have ‖∑n

k=1 wkpk − x‖ ≤ ε. Therefore, since ‖g0 − x‖ ≤ ‖g0 −
∑n

k=1 wkpk‖+
‖∑n

k=1 wkpk − x‖, we obtain

‖g0 − x‖ ≤ Cε2 + ε,

which implies dM (g0, x) ≤ ε(1 + Hε)(1 + Cε), for another constant H depending
on global metric properties of M [Mémoli and Sapiro 2003]. We only care for a
simplified bound

dM (g0, x) ≤ Eε.

Finally, let δ > 0 be the maximal δ > 0 such that BM (x, δ) is (geodesically)
convex. Note that it is a fact that if δ ≤ 1

2 min
(
inj(M), π√

K

)
, where inj(M) is

the injectivity radius of M and K bounds all sectional curvatures in M from above,
then BM (x, δ) is convex for any x ∈ M . See §7.6 and §7.7 in [Chavel 1997]. For
such a δ > 0 and provided ε ≤ δ/E, and {p1, . . . , pn} ⊂ BM (x, ε) for some x ∈ M ,
g0 ∈ BM (x, δ) and -V (g0) will be pointing towards gBM

. Also, in case we want to use
g0 as an approximation to gBM , we have the (weak) bound dM (gBM , g0) ≤ (E+1)ε.
Therefore, g0, as defined above, represents a sensible choice as the initial condition
of an eventual back propagation step, or, in any case, a rough approximation to
gBM

with known error bound. See also Figure 3 (left). Note in particular that it is
also a useful choice from the point of view of computational ease. The algorithm is
summarised in Algorithm 2.

To demonstrate the applicability of this approach in the context of meshless
subdivision, we first consider the case of M representing the unit sphere in the
following section.

2To start from any of the points pk represents another simple choice.
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Input: Intrinsic Voronoi neighbourhood Np of point p ∈ Pl. Weights wi at points
qi ∈ Np.
Output: Weighted geodesic centroid g.

0 *** Computation of extrinsic centroid g0 ***
1 Compute the Euclidean weighted centroid of Np;
2 Compute g0 by orthogonally projecting the weighted Euclidean centroid;
3
4 *** Computation of intrinsic centroid g ***
5 Compute local weighted distance maps dΩr

P
(qi, ·) from each neighbour qi ∈ Np

outwards and accumulate their squared values at the grid vertices;
6 Approximate the gradient of the accumulated distance maps using finite

difference approximation;
7 Back propagate from g0 towards g by following the negative gradient;

Alg. 2: Procedure for computation of a weighted geodesic centroid in pseudocode.

6. EXPERIMENTAL RESULTS AND IMPLEMENTATIONAL DETAILS

We begin with the intrinsic meshless subdivision of a set of points sampled relatively
regularly uniformly from the surface of the unit sphere in R3. This initial restric-
tion to spherical geometry allows for the computation of precise geodesic distances
without the need for numerical techniques. This way qualitative and quantitative
aspects of our operator can be presented without the influence of the particular
projection and gradient descent techniques utilised when processing more complex
geometry. This presentation is followed by applications of our subdivision oper-
ator to more complex geometry. The section concludes with comments on some
implementational aspects.

6.1 Results and discussion

To implement the intrinsic centroid computation method, techniques for the com-
putation of intrinsic distances between points on the surface, the projection of the
starting point for the back propagation onto the surface and the computation of the
back propagation itself are required. In the case of the unit sphere, these techniques
are readily available and no numerical techniques are required. Intrinsic distances
between points follow trigonometrically and orthogonal projection is trivial. Simi-
larly, the exponential map and its inverse are directly available and may be used to
implement the back propagation procedure. As a result, for the case of spherical
geometry, our approach for geodesic centroid computation narrows down to the
technique of Buss and Fillmore [2001].

We apply our intrinsic meshless subdivision operator to a base point set P0 of
2144 points sampled relatively regularly uniformly from the unit sphere (Figure
5). The application of our subdivision operator to P0 using the initial intrinsic
proximity information from VD(P0) yields the subdivided point set P1 of Figure 6.
The result, P2, obtained from the application of the operator to P1 using natural
neighbourhood information from VD(P1) is shown in Figure 7. Given the relatively
strong regularity of the input data, uniform weighting was used for both the refine-
ment and the geometric averaging rule in both iterations. The results produced by
our meshless subdivision operator are presented alongside the point sets produced
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Fig. 4. Histograms of the (spherical) distance from each point in P1 (left) and P2 (right) to its
closest neighbour in the respective set.

Model\k 1 2 3 4 5 6 7 8 9 10
P1 0.807 0.832 0.832 0.821 0.788 0.809 0.8132 0.786 0.818 0.828
P2 0.781 0.815 0.823 0.804 0.785 0.799 0.7980 0.784 0.810 0.822

Table I. Values of the density uniformity measure ρ̂(k) for P1 and P2 and with k ∈ {1, 2, . . . , 10}.
The values underline the regular uniformity of the subdivided point sets generated by our algo-
rithm.

by the application of Loop subdivision to a triangular mesh representation of P0.
As indicated by the detail views of Figure 7, the point distributions obtained from
the two operators after two iterations are qualitatively similar with the slight ir-
regularities in the distribution of P2 being slightly more pronounced in the case of
meshless subdivision due to the use of uniform weights. There are, however, no
noticeable differences in the smoothing effect of these two operators.

In order to analyse the point set distributions generated by our subdivision opera-
tor quantitatively, we compute the mean and the standard deviation of the distance
from each point in the set to its closest neighbour(s) for the subdivided point sets P1

and P2. For each p in the point set Pl, let sdk(p) denote the (spherical) distance from
p to its kth closest neighbour. As an indicator for the uniformity of the density of
point set Pl, consider ρ(k) = minP sdk(p)

maxP sdk(p) . Since ρ(k) represents an absolute measure,

it may be too sensitive, therefore we compute instead ρ̂(k) = mean(sdk)−std(sdk)

mean(sdk)+std(sdk)
,

where mean and std stand for the mean and standard deviation of the spherical
distances over the point set respectively.

The histograms of sd1(x) corresponding to the two sets of points are given in
Figure 4. Note in particular in Table I that the values of ρ̂(k), for 1 ≤ k ≤ 10,
are quite close to 1.0 therefore indicating small dispersion up to the 10th closest
neighbour.

Figure 8 presents an application example dealing with more complex geometry.
We apply our meshless subdivision operator to a base point set of 10088 points
generated from the Michelangelo Youthful data set with the help of [Moenning and
Dodgson 2004]. Experimentation revealed the base point set to be regular enough to
allow for simple reciprocal distance weighting in the computations of the weighted
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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geodesic centroids. The flatly shaded renderings of the surfaces reconstructed from
the subdivided point sets P1 and P2 illustrate the smoothing effect of the meshless
subdivision. As indicated by the comparative illustrations in Figure 9, this approach
may be used to obtain a smoother, more regular and more compact representation
of an highly dense point cloud. A similar effect is shown in Figure 10. The 50%
decimated versions of the rocker arm and screwdriver CAD data sets available
from the Cyberware website were meshlessly subdivided twice. The smoothing
effect of these iterations is again clearly apparent when comparing the surfaces
reconstructed from the subdivided point sets to those reconstructed from P0 and
the non-simplified, non-subdivided data sets respectively.

The detail view of Figure 8 highlights the local clustering effect caused by over-
lapping neighbour relations as discussed in Section 5.1, an effect typically only
encountered with point neighbourhoods which determine the neighbour relations
independently of each other. Our discrete approximation of the intrinsic Voronoi
diagram, however, implies discretisation error and thus individual instances of a
point being assigned to the wrong Voronoi region. The generally limited number
of these instances is considered preferable to the complications associated with ad-
dressing the problem of overlapping neighbour relations (see, e.g. Guennebaud et al.
[2004]) when using alternative neighbourhood concepts.

The limited impact of these assignment errors is illustrated by the detail view
of Figure 11. The Isis data set was subdivided once with the regularity of the
subdivided point set being only mildly affected by erroneous neighbourhood as-
signments. In contrast to the processing of the Youthful base point set, meshless
subdivision of the Isis point cloud using geodesic centroids was found to yield results
not significantly different from the more efficient subdivision by extrinsic centroids.
We exploit this observation, due to the high density of the initial point set, by
presenting the results from orthogonal projection of the uniformly weighted Eu-
clidean centroids, i.e. without subsequent gradient descent towards their geodesic
counterparts.

Table II summarises the parameter settings and point set sizes for the various
application examples. Using our non-optimised implementation, the offset band
computation pre-processing step and a meshless subdivision iteration took a maxi-
mum of a few hundred seconds each. Both offset band and intrinsic Voronoi diagram
computation efficiency generally depend strongly on the offset band radius r and the
grid spacing, our settings of which are presented in the table. Note in this context
that the numerical error inherent in the intrinsic distance computations increases
with r, the admissible minimum value of which necessarily increases with the grid
spacing [Mémoli and Sapiro 2001]. Details on various aspects of the implementation
of our algorithm are provided in the following section.

6.2 Implementational details

The algorithm was implemented in C++ (Microsoft Visual C++ 7.1) with the help
of the “Blitz++ 0.7 Numerical Library” [Blitz++ 2003] on a Pentium 4 2.8GHz,
512MB Windows XP machine. In the following, we summarise relevant implemen-
tational details.
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Iteration 1

∆x(= ∆y = ∆z) r |P0| |P1|
Sphere 0.25 0.8 2144 8570

Youthful 1.0 2.2 10080 39888

Screwdriver 0.5 1.0 13577 56220

Rocker arm 1.0 1.9 20088 81442

Isis 0.1 0.2 187644 760162

Iteration 2

∆x(= ∆y = ∆z) r |P1| |P2|
Sphere 0.25 0.75 8570 34275

Youthful 0.25 0.75 39888 208010

Screwdriver 0.25 0.6 56220 295110

Rocker arm 0.25 0.45 81442 488212

Table II. Parameter settings and point set sizes for the application examples; ∆x, ∆y, ∆z refer to
the grid spacing in the three principal Cartesian grid directions; r represents the constant offset
band radius.

6.2.1 Offset band computation and intrinsic distance mapping. Intrinsic dis-
tance mapping requires, firstly, the computation of the offset band Ωr

P and, sec-
ondly, weighted Euclidean distance mapping within the offset band. We meet both
of these requirements with the help of conventional Fast Marching. For a given
r, offset band computation amounts to the simultaneous propagation of (circular)
fronts from each input point outwards until the front’s extent equals r. The off-
set band consists of those grid vertices visited during the propagation. All other
grid vertices of the point set’s bounding volume are discarded to minimise memory
usage. When dealing with relatively large point sets, we perform this offset band
computation as a pre-processing step which makes the set of valid grid vertices
available for subsequent weighted distance mapping. Irregularly distributed point
sets may require the offset band to be adaptive. This can be achieved by computing
radii ri using a minimum spanning tree or local principal component analysis as
discussed in [Mémoli and Sapiro 2001; 2003]. Weighted distance mapping within
Ωr

P (or Ωri

P ) is achieved by another application of conventional Fast Marching re-
stricted to operate within the offset band only, i.e. the set of grid vertices returned
by the preceding band fitting step.

A single min-heap as typically used for the efficient implementation of the con-
ventional Fast Marching method [Sethian 1999] and a Cartesian grid represent the
main data structures required in this context. The grid data structure is imple-
mented in the form of a lookup table with each grid vertex mapped to, amongst
others, its distance map value and min-heap index and offset band membership
status. By using a lookup table, invalid grid vertices can be quickly discarded and
different grid spacing in each direction is supported.

6.2.2 Geodesic Voronoi diagrams and intrinsic natural neighbourhoods. The nat-
ural neighbourhood information of a point pi ∈ Pl is available from VD(Pl). We
approximate this diagram using weighted geodesic distance maps, i.e. in analogy to
the dropping of pebbles in still water, circular fronts move across the surface from
the points of impact. The locations where wave fronts meet define the geodesic
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Voronoi diagram of the points of impact. Figure 12 gives a triangular mesh-based
example produced using public domain software [Peyré and Cohen 2003]. The
wave propagation is discretised and simulated accurately by solving (2) using our
implementation of the intrinsic distance mapping for surfaces in point cloud form
discussed in Section 6.2.1. This way Voronoi edges/vertices and thus each point’s
Voronoi neighbours are obtained during front propagation as loci of intersection
between geodesic offset curves [Cohen 2001].

The initial geodesic Voronoi diagram, VD(P0 ), is either computed during the
algorithm’s initialisation phase by propagating fronts simultaneously from all pi ∈
P0 outwards (Figure 12) or follows from prior intrinsic point cloud simplification as
indicated in Section 5.2.

The neighbourhood information is held in the form of a lookup table mapping
each p to its set of natural neighbours Np represented by a set of indices referencing
the corresponding input points. The lookup table of (valid) grid vertices, already
discussed above, represents the only other main data structure used in this context
and is required here, as above, for distance mapping support.

6.2.3 Geodesic centroid computation. Using the natural neighbourhood infor-
mation Np of point p, its weighted Euclidean centroid is readily available. We
use the “almost” orthogonal projection operator of Alexa and Adamson [2004] to
project this centroid onto M thereby obtaining g0 (Section 5.3). Fast Marching
for point clouds [Mémoli and Sapiro 2003] is then again used to compute distance
maps within the offset band from each point in Np outwards with the squared dis-
tance map values being accumulated at the grid vertices. To avoid unnecessary
propagation, the extent of the distance mapping is limited to the radius of the
sphere enclosing the points in Np. A standard Runge-Kutta gradient descent pro-
cedure with multilinear interpolation is finally employed to back propagate from
g0 towards the weighted geodesic centroid g by following the (negative) gradient of
the accumulated distance maps estimated with the help of the normalised central
difference operator provided by Blitz++ 0.7 [Blitz++ 2003].

7. CONCLUSION

We introduced the concept of meshless, or point cloud, subdivision based on the
computation of weighted geodesic centroids on manifolds represented by noise-free
or noisy point clouds. We implemented and showed the applicability of this tech-
nique with the help of a new method for the computation of such centroids.

The consideration of local intrinsic point proximity instead of mesh connectivity
helps to overcome some of the limitations of existing mesh subdivision schemes.
For example, by working with the raw data and operating directly across the point
cloud, problems associated with the complexity of the topological subdivision of
high-dimensional meshes are avoided. For extremely high-dimensional data, mesh-
less subdivision operators need to be devised, however, which upsample the point-
sampled geometry more conservatively than the operator suggested in this paper.
In this direction, we are considering introducing adaptive neighbourhoods based on
curvature estimators such as those reported in Cazals and Pouget [2003] and Mitra
and Nguyen [2003]. We leave this to future work.

As first proposed in the context of univariate spline subdivision schemes [Lane
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and Riesenfeld 1980], we plan to investigate the practical and theoretical aspects
of repeating the geometric averaging step several times after each refinement step.
We expect to get higher smoothness with a higher number of averaging steps in
each iteration of the meshless subdivision process.

Depending on the extent of any non-uniformities of the input point cloud, the
experimental selection of point weights tends to be elaborate. We are currently
working on the more systematic choice of weights. This issue is of course closely
related to the theoretical analysis of our meshless intrinsic subdivision scheme.
In this context, we intend to build upon ideas of Wallner and Dyn [Wallner and
Dyn 2003; 2004; 2005], which this research was inspired by, in particular their
convergence and smoothness analysis of non-linear geodesic curve subdivision by
proximity to a corresponding linear extrinsic subdivision scheme.

ACKNOWLEDGMENTS

We gratefully acknowledge the permission to use the Michelangelo point sets granted
by the Stanford Computer Graphics group. The Isis, 50% decimated and non-
simplified CAD data sets and the Bunny point set were taken from the Cyber-
ware and Stanford 3D Scanning Repository websites respectively. The (extended)
Loop subdivision implementation was obtained from Henning Biermann’s website
at http://mrl.nyu.edu/˜biermann/subdivision/. Surface reconstructions were per-
formed with the help of Paraform’s Points2Polys software available at http://para-
form.com/ppdl/.

REFERENCES

Alexa, M. and Adamson, A. 2004. On normals and projection operators for surfaces defined by
point sets. In Proc. Symp. on Point-Based Graphics. 149–156.

Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. 2003. Com-
puting and rendering point set surfaces. IEEE Trans. on Visual. and Comp. Graph. 9, 1,
3–15.

Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M. 2003. Anisotropic
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Fig. 5. Relatively regularly uniformly distributed base point set, P0, of 2144 points
acquired from the unit sphere (right). The triangular base mesh generated
from P0 for the support of Loop subdivision is shown on the left. A flatly
shaded rendering of the reconstructed surface is shown in the centre.

Fig. 6. Results after one iteration of Loop (left) and meshless subdivision (right);
|P1| = 8570 points in both cases. Flatly shaded renderings of the recon-
structed surfaces are shown next to each point set.

Fig. 7. Results after the second iteration of Loop (left; 34275 points) and mesh-
less subdivision (right; 36442 points). The corresponding reconstructed
surfaces are given next to each point set. The detail views indicate how
the slight irregularities in the distribution of P0 lead to slightly more pro-
nounced local irregularities in the case of meshless subdivision due to the
use of uniform weighting. These slightly more pronounced irregularities do
not have any noticeable effect on the smoothness of the surface.
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Fig. 8. Flatly shaded renderings of the surfaces reconstructed from point sets |P0| =
10088 (top and bottom left), |P1| = 39888 (centre and bottom right) and
|P2| = 208010. The smoothing effect of meshless subdivision is clearly visible.
As illustrated by the detail front and side views, the subdivided point sets
are distributed relatively regularly uniformly. Instances of local irregularities
(encircled in black) are caused by discretisation errors during discrete intrinsic
Voronoi diagram computation.
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Fig. 9. Flatly shaded renderings of the surfaces reconstructed from the non-simplified
Youthful point set (left) and P2 of Figure 8 illustrating how meshless subdivi-
sion of a base point set resulting from point cloud simplification may be used
to obtain a smoother, more regular and more compact representation of the
original data set of 1728305 points.

Fig. 10. On the left, the flatly shaded renderings of surfaces reconstructed from the
50% decimated screwdriver (top) and rocker arm (bottom) CAD data sets
(P0) are shown. The reconstructed surfaces obtained from two iterations of
meshless subdivision of these point sets are presented in the centre (P2). The
surfaces reconstructed from the non-simplified, non-subdivided CAD data sets
are given on the right. The smoothing effect of meshless subdivision is again
clearly visible.
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Fig. 11. Point set detail views and smoothly shaded renderings of the Isis data set (left),
P0, |P0| = 187644, and the subdivided point set P1 (right), |P1| = 760162,
resulting from one iteration of meshless subdivision. Due to the high density of
P0, the difference in location between the (uniformly weighted) extrinsic and
the corresponding intrinsic centroid was found to be negligible and extrinsic
means were used throughout.

Fig. 12. Wave propagation for the computation of a discrete geodesic Voronoi diagram.
By simultaneously propagating waves for geodesic distance mapping purposes
from the (red) generator points outwards (left), an intrinsic Voronoi partition-
ing of the triangulated surface is obtained (right).
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